Как выглядит математика: реальные воплощения абстрактных формул

Как выглядит математика: реальные воплощения абстрактных формул

Художник, который превращает абстрактные математические концепции в реальные и завораживающие физические объекты.

     По легенде, Пифагор первым обнаружил, что две одинаково натянутые струны издают приятный звук, если их длины соотносятся как небольшие целые числа. С тех пор людей завораживает таинственная связь красоты и математики, вполне материальной гармонии форм, колебаний, симметрии — и совершенной абстракции чисел и отношений.

     Эта связь эфемерна, но ощутима, недаром художники уже много лет пользуются законами геометрии и вдохновляются математическими закономерностями. Генри Сегерману трудно было отказаться от этого источника идей: в конце концов, он математик и по призванию, и по профессии.

yapcypaupukpkkk.jpg

Бутылка Клейна. Увеличенная копия этой скульптуры украшает факультет математики и статистики Мельбурнского университета.

Фракталы

uprkpaukacyuuca.jpg

«Я тысячи раз видел их на иллюстрациях и компьютерных моделях, но, когда впервые взял такую 3D-скульптуру в руки, сразу заметил, что она еще и пружинит, —— Физические воплощения математических концепций всегда чем-нибудь да удивляют».

 

Многогранники

      Эволюция художественных экспериментов Сегермана с 3D-печатью странным образом повторяет эволюцию математических идей. Среди его первых опытов — классические платоновы тела, набор из пяти симметричных фигур, сложенных правильными треугольниками, пятиугольниками и квадратами.

ycauavcyuaucauau.jpg

Стэнфордский кролик

      Уже эти простейшие формы, перекочевав с двумерных иллюстраций и идеального мира воображения в трехмерную реальность, вызывают внутреннее восхищение их лаконичной и совершенной красотой. «Связь математической красоты с красотой визуальных или звуковых произведений искусства мне кажется очень зыбкой.

cyuacyacyaucauc.jpg

Платоновы тела

jcvjvjcvcvcvcv.jpg

Дополнение восьмерки

fycvacjvjcvauaau.jpg

Тессеракт

           В основе математической красоты может лежать чистый, эффективный минимализм — и удивленный возглас: «Ага!»». Глубокая красота математики может пугать, как ледяная вечность дворца Снежной королевы. Однако вся эта холодная гармония неизменно отражает внутреннюю упорядоченность и закономерность той Вселенной, в которой мы живем.

           Математика — лишь язык, который безошибочно соответствует этому изящному и сложному миру. Парадоксально, но в нем находятся физические соответствия и приложения для почти любого высказывания на языке математических формул и отношений. Даже самым абстрактным и «искусственным» построениям рано или поздно находится приложение в реальном мире.

cfvafafuafucv.jpg

            Топологическая шутка: с определенной точки зрения поверхности кружки и бублика «одинаковы», точнее говоря — гомеоморфны, поскольку способны переходить одна в другую без разрывов и склеек, за счет постепенной деформации.

 

Отредактировал Мерзляков Н

Источник https://www.popmech.ru/design/239351-kak-vyglyadit-matematika-realnye-voploshcheniya-abstraktnykh-formul/